Mathematical Modeling of Dynamic Instability in Microtubules

نویسنده

  • Christine Lucille Kuryla
چکیده

Microtubules are biological polymers that have many functions in cells, such as support and structure in the cytoskeleton, providing avenues and mechanisms for intracellular transportation, and separating chromatids during cell division. Microtubule dynamic instability is an integral part of cell functioning, enabling microtubules to rapidly find and change spatial arrangements and interact with necessary biological components. Due to dynamic instability, microtubule ends switch randomly between phases of growth and depolymerization (subunits are being constantly added and removed from the ends of the various microtubules). The mechanisms of dynamic instability are not well understood, partially due to the complexity of microtubule structure. Experiments have shown that microtubules do not exhibit behavior consistent with the classical model of equilibrium polymer dynamics. Mathematical and computational models have been created to explore and better understand the phenomenon of dynamic instability. A coarse-grained stochastic model of a system of microtubules from Gregoretti et al. (JCS 2006) had previously been extended to simulate free microtubules in solution. To improve the model and make it more biologically realistic, a Monte Carlo algorithm was implemented that allows new microtubules to spontaneously form (nucleate) from the free subunits in the solution. Additional statistical output and analysis was also added to facilitate the investigation of the microtubule behavior. This enables the exploration of the effect of the ease of nucleation on the behavior of the system. The simulations will be compared with experimental results to attempt to better understand dynamic instability. The refinement of the understanding of dynamic instability has implications for the development of cancer treatments and the study of self-organized systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Simulation and Mechanical Properties of Microtubules

This work is conducted to obtain mechanical properties of microtubule. For this aim, interaction energy in alpha-beta, beta-alpha, alpha-alpha, and beta-beta dimers was calculated using the molecular dynamic simulation. Force-distance diagrams for these dimers were obtained using the relation between potential energy and force. Afterwards, instead of each tubulin, one sphere with 55 KDa weight ...

متن کامل

The Origin of Phragmoplast Asymmetry

The phragmoplast coordinates cytokinesis in plants [1]. It directs vesicles to the midzone, the site where they coalesce to form the new cell plate. Failure in phragmoplast function results in aborted or incomplete cytokinesis leading to embryo lethality, morphological defects, or multinucleate cells [2, 3]. The asymmetry of vesicular traffic is regulated by microtubules [1, 4, 5, 6], and the c...

متن کامل

Nonlinear Dynamic Modeling and Hysteresis Analysis of Aerospace Hydro - dynamical Control Valves

A new procedure for deriving nonlinear mathematical modeling for a specific class of aerospace hydro - mechanical control valves is presented. The effects of friction on the dynamic behavior of these types of valves along with the experimental verifictions are also given. The modeling approach is based on the combination of the following three tasks: decomposition of the valve into simple speci...

متن کامل

Modified Couple Stress Theory for Vibration of Embedded Bioliquid-Filled Microtubules under Walking a Motor Protein Including Surface Effects

Microtubules (MTs) are fibrous and tube-like cell substructures exist in cytoplasm of cells which play a vital role in many cellular processes. Surface effects on the vibration of bioliquid MTs surrounded by cytoplasm is investigated in this study. The emphasis is placed on the effect of the motor protein motion on the MTs. The MT is modeled as an orthotropic beam and the surrounded cytoplasm i...

متن کامل

Nanobiomechanical Properties of Microtubules

Microtubules, the active filaments with tubular shapes, play important roles in a wide range of cellular functions, including structural supports, mitosis, cytokinesis, and vesicular transport, which are essential for the growth and division of eukaryotic cells. Finding properties of microtubules is one of the main concerns of scientists. This work helps to obtain mechanical properties of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013